The pandemic is a pivotal moment to raise awareness of biodiversity loss

Biodiversity loss is low on the public agenda, but the pandemic could help us reassess our relationship with the natural world,  writes Clare Matterson, the Museum’s Director of Engagement.

A newfound appreciation for weeds in the cracks of city pavements, enjoying melodious birdsong in place of the booming traffic and marvelling at quiet clear blue skies have become daily lockdown news.

Amidst the tragedy of Covid-19, nature has thrived and as we have slowed down in lockdown its variety has caught our eye.

Today is International Day For Biological Diversity, created by the United Nations 27 years ago to raise awareness of biodiversity issues and celebrate that variety.

Since then scientists have warned us about the catastrophic loss of species and their habitat because of our actions.

We need that variety of life on earth for food, medicines and clean water, never mind a spiritual boost in tough times.

Continue reading “The pandemic is a pivotal moment to raise awareness of biodiversity loss”

Highlights from City Nature Challenge 2020 | Citizen Science

Speckled wood butterfly

What were your highlights from the City Nature Challenge this year? Although I missed taking part in a public BioBlitz at the Natural History Museum, I enjoyed my own mini BioBlitz in my little London garden – making 99 observations and managing to identify 80 different species. My favourite find was a tiny Bethylid wasp which was the first one I have ever seen. These wasps are just a few millimetres long and are known as ‘flat wasps’ because of their squashed appearance. They are parasitoids of beetle larvae or moth caterpillars.

Bethylidae wasp
The Bethylid wasp I found, too tiny to do justice with my camera. Photograph by VJ Burton.

Continue reading “Highlights from City Nature Challenge 2020 | Citizen Science”

Creating a new promotional banner component for the launch of the Anthropocene hub

A homepage takeover component, created for the launch of the Anthropocene hub

The Museum’s new strategy to 2031 has been announced, with a call to arms to take action against the current environmental crisis facing our planet.

In the lead up to the announcement, the Connect product team in the Digital Media department were tasked with a brief: to deliver an impactful “takeover” of the Museum’s homepage which grabbed the attention of the user while not only conveying a sense that urgent action was needed, but delivering a message of hope for the planet’s future, not despair.

Continue reading “Creating a new promotional banner component for the launch of the Anthropocene hub”

Fossil ice found in Earth’s starting material |Curator of Petrology

High-resolution SEM (Scanning Electron Microscope) investigations, along with high-resolution CT imaging of a 4.6 billion-year-old meteorite have revealed “fossilised” ice, showing for the first time direct evidence that when early asteroids formed they incorporated frozen water into their matrix.  This has allowed Dr Epifanio Vaccaro, Curator of Petrology at the Natural History Museum, along with colleagues in Japan, to create a model of how the asteroids grew and the planets formed, including our own planet Earth.

earth2-globe-browse
Picture of Earth credit NASA

The presence of ice in some asteroids it has been known for a long time, this has been hinted at by the observed alterations caused by the water to the minerals making up the asteroids known as aqueous alterations. However, the direct evidence of the presence of ice was never been observed before. The discovery was made by Dr Epifanio Vaccaro, Curator of Petrology at the Museum, along with a team of Japanese researchers.

Continue reading to find out more about this important discovery.

Continue reading “Fossil ice found in Earth’s starting material |Curator of Petrology”

Scaling Up Digitisation | Digital Collections Programme

A guest blog by Robyn Crowther

1) scale insects
Digitised microscope slides from the Museum’s Coccoidea collection

The Digital Collections Programme is digitising the Museum’s scale insect collection. This collection is estimated to contain 100,000 microscope slides, making it the biggest slide digitisation project we’ve undertaken so far. Continue reading “Scaling Up Digitisation | Digital Collections Programme”

Digitising Butterfly types of the 21st century |Digital Collections Programme

This slideshow requires JavaScript.

A Guest blog by Robyn Crowther and Blanca Huertas

Some of the Museum’s invaluable butterfly reference material, previously only accessible to a handful of scientists, has been released onto the Museum’s Data Portal. Over 90% of these specimens were designated as types in the 21st Century, but this is the first time that images of many of these species have been freely accessible to the global community.

My type on paper

When scientists describe and name a new species, they aren’t actually describing every individual that belongs to that species. Instead they select one or a few specimens with ‘typical’ characteristics representing a species to write a detailed description. These name-bearing specimens are known as types, and are used as a reference when identifying and grouping other individuals into that species.

Each butterfly and its labels are imaged as part of the digitisation process.
Each butterfly and its labels are imaged as part of the digitisation process.

A type bears not only a name, but a big responsibility. If you want to identify and name specimens you have observed or collected you need to look to the type (or an illustration of it) and compare the key characteristics that make that species unique and different from others. For this reason, types are arguably some of the most important specimens in a collection and a priority for digitisation projects.

Recently, the Museum’s butterfly types have been separated from the main collection into a new seperate collection, making it easier to find, use and reference them. To make these types even more accessible, it was also decided that this collection would be digitised and made available on data.nhm.ac.uk – separate curation first makes digitisation of these collections much more efficient, removing the need to ‘pick and choose’ from many different collections drawers.

Vital statistics

We digitised 1000 specimens, covering 220 species. These specimens were collected from 46 countries, representing all continents. The oldest type in this project was designated in 1939 and the newest in 2017.

What’s in a name?

Digitisation isn’t just about capturing an image of a specimen. Before these butterflies were ready for their close ups, extensive curatorial work was needed to prepare the collection, ensuring that each specimen is associated with the correct taxonomic information (e.g. the species and genus names are correct).

2 butterfly types
The traditional Museum round label with a red border makes specimens instantly recognisable as Holotypes

Among these specimens, we found various examples that illustrated the importance of this digitisation project. For example, six specimens used to describe the species Cacyreus niebuhri, an African species, in 1982, had no identification labels or registration information when they were found in the mixed collections – they had lost their name!

As part of this project, an investigation was mounted to discover the true identity of these six butterfly types. Fortunately, information about when and where the specimens were collected was available on the labels pinned underneath each butterfly, with a small label from the author stating they were part of a type series.

The specimen labels indicated that they were collected in the Republic of Yemen by “T.B. Larsen” in 1980. A former Scientific Associate of the Museum, Dr Torben Larsen was a world renowned expert on butterflies of Africa and wrote many books on the subject. A search of his name, along with the collection event details from the specimen labels, threw up the only book on butterflies written from the area and at the time of the species’ description in 1982. Although the book is currently out of print, “The Butterflies of the Yemen Arab Republic” is available at the Museum library and had been digitised so we were able to search the text. As we knew the family that these butterflies belong to, we were able to find the description and images of the mysterious specimens and their name. Cacyreus niebuhri – named for the 18th century Danish topographer Carsten Niebuhr, one of five men who took part in an ill-fated expedition to Yemen that saw him as the sole survivor.

Further searching online revealed that Larsen’s book is the only place that any images of this species can be found, including recent revisions and websites describing the species. The images included in the book are of a quality that makes it hard to identify important diagnostic characteristics, and resolution is even lower in the digitised copy of the book. Type specimens are the reference material for any specimen identification, so without access to a detailed image, identifying anything as C. niebuhri becomes extremely difficult, leading to misidentifications or no identifications at all. The quality of the images that we have released on data.nhm.ac.uk help to address this problem.

Above left: The Museum’s image of the paratype specimen of Cacyreus niebuhri. Right: The only reference image available for C. niebuhri before this project.

Sharing is caring

By sharing data about our specimens we provide a resource that can be used by the scientific community and the public in a number of ways. One of the reasons museum collections remain such an important scientific resource is because they provide a window into a species’ past, allowing us to compare them over time and space, revealing if and how their distributions have altered with the rapidly changing environment. This all starts with being able to give members of the same species the correct name, so that the comparisons are meaningful.

C. niebuhri, a member of the Lycaenidae family, is endemic to the Republic of Yemen, only occurring on the upper reaches of the wetter mountains of that country. These mountains form part of the Arabian Peninsula ecoregion, a region that supports thousands of unique plants and animals and one that is increasingly under pressure from deforestation and soil erosion. Any work aiming to mitigate these pressures on endemic species needs first to know what species occur in this area so that their populations can be monitored. Comparing individuals currently in the area to a name- bearing type specimen should make this easier.

5 butterfly types
A paratype specimen of the near threatened Dingana alaedeus

Dingana alaedeus is another example of an endemic species that the Museum holds type material for. Commonly known as the Wakkerstroom widow, this butterfly is found only in South Africa’s high altitude grasslands at elevations of about 2,000 meters and classified as “Near Threatened” during the 2013 Conservation Assessment of Butterflies for South Africa. Similar to the previous example there is little information relating to this species online, with the same single image being used on several different online resources. In fact, for most of the 220 species we have digitised during this project the images that we have uploaded to the Museum’s Data Portal are the first and only images to be easily accessible online.

Unlocking the Museum’s collections and making them available to all is the mission behind many of our digitisation projects and is one of the Museum’s strategic priorities. There are over 1.5 billion natural history specimens in collections around the world. They have the potential to play a critical role in addressing the most important challenge that humans face over the next years: how to map a sustainable future for ourselves and our changing planet. To see the butterfly types digitised during this project, and over 4.3 million other specimens, visit the Museum’s Data Portal.

Endless forams – transforming the study of natural history and training the scientists of the future| Curator of Micropalaeontology

Last week the Museum internally launched its new strategy to 2031. It called us to make our data, insight, knowledge and expertise openly available. Strategic priorities included transforming the study of natural history to benefit people and planet as well as training future generations of scientists.

Challenger_Planktonic_Foraminifera
Scanning Electron microscope image of planktonic Foraminifera from the Challenger Collection.

I immediately felt compelled to write about a paper we jointly published on-line this week in the journal Paleoceanography and Paleoclimatology that features our collections. We provided data for a project run by Yale University to create a portal of calcareous plankton called Foraminifera. It can be used to train the scientists of the future and test a machine learning classifier that could generate large datasets vital for research on our oceans.

Continue reading “Endless forams – transforming the study of natural history and training the scientists of the future| Curator of Micropalaeontology”

Displaying our Earth science specimens

by Robin Hansen, Curator, Minerals and Gemstones, NHM Earth Sciences

​​As part of the Galley Enhancements​​ Programme to refresh the Museum’s Earth Galleries Ground Floor, we’ve been working on the specimens to improve the experience for visitors, improve collection visibility and update the science.

Continue reading “Displaying our Earth science specimens”

A million threatened species? Thirteen questions and answers

Prof. Andy Purvis

Coordinating Lead Author, IPBES Global Assessment and Life Sciences Research Leader at The Natural History Museum, London

@AndyPurvisNHM

The IPBES Global Assessment estimated that 1 million animal and plant species are threatened with extinction. It also documents how human actions have changed many aspects of nature and its contributions to people; but species threatened with extinction resonate with the media and the public in ways that degradation of habitats and alteration of rates of ecosystem processes perhaps don’t, so the figure was widely reported.

IPBES is the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, an independent intergovernmental body that was established in 2012 to strenthen links between science and policy to support conservation and sustainable use of biodiversity, long-term human well-being, and sustainable development

Because only the Summary for Policymakers has so far been made available, it wasn’t clear where the figure of 1 million threatened species came from. Some journalists and researchers asked me, so I explained it to them, and will explain it again here. Some other writers, often with a long history of commenting critically on reports highlighting environmental concerns, instead railed against the Global Assessment in general and the figure of 1 million threatened species in particular. Given that these writers often advance empty or bogus arguments, I thought it would be also be useful to explain why these arguments are wrong.

I have therefore written this blog post in the form of thirteen questions and answers.

Continue reading “A million threatened species? Thirteen questions and answers”