Digitisation on demand: riverflies and redlists | Digital Collections

A guest blog by Robyn Crowther

Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) – or EPT for short – are three orders of insects found in freshwater systems across the world. These three key groups are important bioindicators, meaning that their presence and the size of their populations can give us an idea about the health of a freshwater habitat. There are approximately 89,000 specimens in the Museum’s EPT collection, and the Digital Collections Programme (DCP) are in the process of digitising them. Mobilising this data will aid research being undertaken by the International Union for Conservation of Nature (IUCN), to further our understanding of EPT distribution and assess these species’ vulnerability to extinction.

Continue reading “Digitisation on demand: riverflies and redlists | Digital Collections”

Conserving Darwin’s marine fossils | Digital Collections Programme

A guest blog by Lucia Petrera

While Charles Darwin was travelling on the Voyage of the Beagle, he found thousands of shells and hard parts of marine animals on land, far away from the sea. This shaped his and our current understanding on how the South American continent has changed overtime. In this blog, Lucia Petrera takes us behind the scenes to explore how these fossils will be protected and shared with the world.

The project to conserve and digitise the fossils collected by Darwin began with the fossil mammals collection. Thanks to the generosity of the Hartnett Conservation Fund we are now able to include the other fossils collected by Darwin which form part of the Museum collections. We are currently working to conserve and digitise around 255 marine fossil invertebrates collected in South America from 1831-1836.

They include:

• Brachiopods, or lampshells, which first appear in the fossil record 550 million years ago and are still alive today
• Ammonites, which are coiled shelled molluscs related to octopuses and squids, which first appear in the fossil record 420 million years ago and are extinct
• Bivalves, the group of molluscs that includes mussels and clams, which first appear in the fossil record 520 million years ago and are still alive today
• Gastropods, the group of molluscs that includes slugs and snails, which first appear in the fossil record 500 million years ago and are still alive today


First ammonite in South America

Image of NHMUK PI C 2612, an ammonite in the genus Maorites one of the first ammonites recorded from South America with the original red rectangular Darwin labels.

Many of the specimens that Darwin collected are ‘type’ specimens – they were a new species, unknown to science at that time. Darwin collected one of the first ammonites ever recorded from South America, from Mount Tarn in Tierra del Fuego, Chile. Ammonites are excellent ‘index fossils’ – fossils that are often able to be used to identify the geological time period they existed in. Darwin enlisted assistance with the identification of the material from experts at the time, including Alcide D’Orbigny, a French naturalist. Initially this specimen was identified as Ancyloceras simplex, a European ammonite. However, more recent re-identification has placed it in the genus Maorites. Maorites is from the Late Cretaceous period (100-66 million years ago) and found only in the southern continents such as South America, Australia, and Antarctica, the continents that were part of the ancient super continent Gondwana. Gondwana gradually broke up 180 – 80 million years ago, carrying its cargo of ‘Gondwanan’ fossils on each of its constituent continents.

A map showing the continents that made up Gondwana. Image: United States Geological Survey via Wikimedia Commons.

Miles of seashells

NHMUK PI G 25287 Adelomelon alta, a carnivorous snail from Santa Cruz in Argentina. This species lived in shallow seas on sandy bottoms where they can find clams to pry apart and eat.

Fossils can be also indicators of past habitats and geological processes, and some of the marine shells collected by Darwin told a fascinating tale. Darwin observed marine shells along 1200 miles (1900 km) of coastline on what he called ‘successive beaches’- geological features now known as ‘marine terraces’. A marine terrace is any relatively flat, horizontal, or gently inclined surface of marine origin, bounded by a steeper ascending slope on one side and by a steeper descending slope on the opposite side. Darwin theorised his ‘successive beaches’ extended to 1600 miles (2600 km) or more. He collected his thoughts in an essay entitled ‘The Elevation of Patagonia’, documenting his model for the formation of successive beaches. This challenged his geological learning from Charles Lyell’s Principles of Geology, that had supposed elevation change to be much more localised. Darwin’s conclusions are confirmed by geologists today, and his successive beaches were most likely formed during ice ages alternating roughly every 100,000 years between glacial and warmer periods. During the glacial periods much of the world’s water was locked away and sea level fell by about 100m. In warmer times, the sea rose and areas were flooded again. This interplay of sea level change and regional uplift is why Darwin found so many marine fossils at high elevations and in some cases far from the sea. Some specimens Darwin found were species that could still be found living on local coasts, which told him that this land change happened relatively recently. One of Darwin’s major achievements on the Beagle voyage was his discovery that much of the southern half of South America had been uplifted in relatively recent geological times.

Preserving Darwin’s Legacy

NHMUK PI G 26369-26370-26371 Three specimens of the Plio-Pleistocene carnivorous gastropod Chorus blainvillei (d’Orbigny) from Coquimbo, Chile. Before and after restorage.

To conserve these specimens, we need to keep them in a stable environment to minimise the risk of damage to them during handling and storage. We use conservation grade inert materials to re-house these specimens so that they will be kept in the same condition for many years to come. Due to the historic nature of this collection, some of this work has involved the fabrication of bespoke supports suited for long-term preservation. For example, some of Darwin’s brachiopods were stored on old wooden boards using nails to keep the specimen in place. At the bottom of each board there is a handwritten label with the specimen’s data. As we want to both conserve the specimen and the historical label, this required some creativity. These nails are ordinary builders’ nails, however due to the metal in the nails being lot harder than the soft rock of the fossil shells, this can cause abrasion and  leave grooves where they touch the specimen, so needed to be removed. After removing the nails, the board was partially padded using Plastazote® foam which was cut to the exact size needed to support the specimens. This prevents movement, further abrasion and damage, while leaving the label area uncovered so that the important collection data, such as species name, collections site and date can be read.

In addition to conserving and re-storing the specimens, we are also photographing and capturing associated data on the specimens to be released via the Museum’s Data Portal. High resolution photographs are being taken so that all angles and defining characteristics of the specimen, as can be seen with the image of Terebratula above. Terebratula had a fleshy stem protruding from its shell that it used to attach to something hard and firm such as a rock. To feed, they open their shell and the sea water (containing small food bits) circulates and the animal uses its filter feeding organ to get the nutrients it needs. Researchers use these example specimens as reference material and will want to be able to clearly see the characteristics unique to that species.

All of these specimens had a significant impact on Darwin’s thinking. By fully digitising the specimens, researchers all over the world working in taxonomy, geology, biogeography, ecology and more will be able to access high resolution photographs and specimen data from these historically and geologically important specimens without travelling, continuing the long process of study of those specimens started by Darwin himself. Read more about other parts of Darwin’s collections that we are digitising in our previous blogs or stay up to date the Darwin digitisation project by following @NHM_Digitise and @NHMfossilmammals on twitter.

Digitisation on demand: mobilising natural history data to address society’s biggest challenges

Access to natural history collections can be added to the ever-growing list of things that became virtual in 2020. Along with virtual coffee breaks, virtual meetings and the ubiquitous virtual pub quizzes, SYNTHESYS+ users are now able to request Virtual Access to natural history collections. 

Continue reading “Digitisation on demand: mobilising natural history data to address society’s biggest challenges”

Curator of Micropalaeontology | Diary of a Principal Curator Jan 2021

NHM_collections_footprint

This year I’m writing a diary entry each month for a typical week in the life of a Principal Curator at the Natural History Museum. In the January entry I cover the return to work after Christmas, home schooling, the return of Dippy, news of a possible move of the collection in my charge to Harwell and a rare trip into S Kensington.

Continue reading “Curator of Micropalaeontology | Diary of a Principal Curator Jan 2021”

Joining the digitisation team – in the middle of a pandemic | Digital Collections

Laura Jacklin is on secondment as the Communications Manager for the Digital Collections Programme. A few weeks in, she shares her first impressions. 

I’ve worked at the Museum for three years, but moving from the marketing team to the Digital Collections Programme has felt like I’ve entered a parallel universe – it’s the Museum, but not as I know it!  

Continue reading “Joining the digitisation team – in the middle of a pandemic | Digital Collections”

Lockdown introduces a new method for engaging with our collections | Curator of Micropaleontology

Nikon

2020 has been a difficult year and since March we have been working away from the collections in South Kensington. Learning new on-line communication skills has created opportunities for making our collections available to a wider audience.

Read on to find how using Microsoft Teams and a Nikon microscope we have remotely delivered access to our Micropalaeontology collections for the first time.

Continue reading “Lockdown introduces a new method for engaging with our collections | Curator of Micropaleontology”

Darwin’s Cargoes |Digital Collections Programme

A guest blog by Prof Adrian Lister

HMS Beagle took Charles Darwin on his famous voyage of discovery from 1831-1836. Darwin collected thousands of specimens, many of which survive in the collections of the Museum, but how did these specimens make their way to the UK from remote locations around the world?

In this blog, marking Darwin’s first fossil discovery on 22nd September 1832, Prof Adrian Lister retraces the journey of Darwin’s Cargoes. Continue reading “Darwin’s Cargoes |Digital Collections Programme”

Museum collections used to show our oceans are more acidic than 140 years ago| Curator of Micropaleontology

This pre-lockdown publication from the Micropaleontology team at the Museum has received a lot of press and social media attention. CT scans of the calcareous shells of microscopic plankton called Foraminifera have shown that modern examples can be considerably thinner than their equivalents recovered by the ground breaking Challenger Expedition of the 1870s. We argue this thinning is due to increased levels of carbon dioxide in the atmosphere and subsequently more acidic oceans.

Read on to find out about the methods used and why this discovery is so significant for the future of our oceans and planet.

CT scans Foraminifera
CT scans of microscopic planktonic Foraminifera showing differences in wall thickness; historical specimens are on the bottom row and the warm colours indicate considerably thicker shells.

Continue reading “Museum collections used to show our oceans are more acidic than 140 years ago| Curator of Micropaleontology”

Banks in Britain: the British plant collections of Joseph Banks | Botanical Collections

The private herbarium of the eminent eighteenth-century naturalist and explorer Sir Joseph Banks became one of the founding collections of the Natural History Museum’s herbarium following his death 200 years ago this year, in 1820.

The legacy of Banks’s voyages overseas – and particularly the Endeavour voyage with James Cook – has been well documented. This post, by Fred Rumsey, looks at the British specimens Banks collected, or was gifted, and considers the significance of those collections today.

Continue reading “Banks in Britain: the British plant collections of Joseph Banks | Botanical Collections”